高等数学-积分

高等数学-积分

SunnyDusk Lv3

一元函数积分学

不定积分

原函数与不定积分的概念及性质

积分是求导的逆运算,不定积分的本质就是已知导数(微分)求原函数的过程。

  1. 原函数
    如果F(x)=f(x)F'(x)=f(x)或者dF(x)=f(x)dxdF(x)=f(x)dx,则称函数F(x)F(x)为函数f(x)f(x)一个原函数
    原函数存在定理:如果函数在某区间内连续,则其在该区间内必有原函数;
    原函数性质:如果函数f(x)f(x)有一个原函数F(x)F(x),那么它一定有无数个原函数;
    原函数之间相差一个常数;f(x)f(x)的全体原函数可以表示为F(x)+CF(x)+C{\color{Red} } ,其中CC为任意常数。
  2. 不定积分
    函数f(x)f(x)的全体原函数即称为f(x)f(x)不定积分,记为f(x)dx\int f(x)dx
    其中\int 为积分号,f(x)f(x)为被积函数,f(x)dxf(x)dx为被积表达式,xx为积分变量。
    若函数f(x)f(x)f(x)f(x)的一个原函数,则有:f(x)dx=F(x)+C\int f(x)dx=F(x)+C
    练习:
    (1). 求x3dx\int x^3dx
    解:=x44+C=\frac{x^4}{4}+C
    (2). 求exdx\int e^xdx
    解:ex+Ce^x+C
    (3). 求11+x2dx\int \frac{1}{1+x^2}dx
    解:arctanx+C\arctan x +C
    (4). 求1xdx\int \frac{1}{x}dx
    解:lnx+C\ln|x|+C{\color{Orange} }
  3. 基本积分公式
    (1). kdx=kx+C\int kdx=kx+C
    (2). xμdx=xμ+1μ+1+C\int x^\mu dx=\frac{x^{\mu +1} }{\mu +1} +C
    (3). 1xdx=lnx+C\int \frac{1}{x} dx=\ln |x|+C
    (4). exdx=ex+C\int e^x dx=e^x+C
    (5). 11+x2dx=arctanx+C\int \frac{1}{1+x^2} dx=\arctan x+C
    (6). 11x2dx=arcsinx+C\int \frac{1}{\sqrt{1-x^2} } dx=\arcsin x+C
    (7). cosxdx=sinx+C\int \cos x dx=\sin x+C
    (8). sinxdx=cosx+C\int \sin x dx=-\cos x+C
    (9). 1cos2xdx=sec2xdx=tanx+C\int \frac{1}{\cos^2x} dx=\int \sec^2 xdx=\tan x+C
    (10). 1sin2xdx=csc2xdx=cotx+C\int \frac{1}{\sin^2x} dx=\int \csc^2 xdx=-\cot x+C
    (11). secxtanxdx=secx+C\int \sec x \tan x dx=\sec x+C
    (12). cscxcotxdx=cotx+C\int \csc x \cot x dx=-\cot x+C
  4. 不定积分的性质
    (1). 设函数f(x)f(x)g(x)g(x)的原函数存在,则[f(x)±g(x)]dx=f(x)dx±g(x)dx\int [f(x) \pm g(x)]dx=\int f(x)dx \pm \int g(x)dx
    (2). 设函数f(x)f(x)的原函数存在,kk为非零常数,则kf(x)dx=kf(x)dx\int kf(x)dx=k \int f(x)dx
    (3). 设函数f(x)f(x)的原函数存在,则[f(x)dx]=f(x);d[f(x)dx]=f(x)dx[\int f(x)dx]'=f(x);d[\int f(x)dx]=f(x)dx
    (4). 设函数f(x)f(x)可导,则f(x)dx=f(x)+C;df(x)=f(x)+C\int f'(x)dx=f(x)+C;\int df(x)=f(x)+C
    规律1:先积后导=本身;先积后微=本身dxdx;先导/微后积=本身+CC
    规律2:最外层是dd则有dxdx,最外层是\int 则有CC,最外层是'则没dxdx也没CC


    例题1:设f(x)f(x)可导,则下列等式正确的是( D );
    A. f(x)dx=f(x)\int f'(x)dx=f(x)
    B. d[f(x)dx]=f(x)d[\int f(x) dx]=f(x)
    C. [f(x)dx]=f(x)+C[\int f(x) dx]'=f(x)+C
    D. ddx[f(x)dx]=f(x)\frac{d}{dx} [\int f(x) dx]=f(x)
    解析:有两个规律,A最外层为\int 最后没有CC,错误;
    B最外层为d,最后没有dxdx,错误;
    C最外层导数,最后没有有dxdx,正确;
    例题2:设exe^{-x}是函数f(x)f(x)的一个原函数,则下列等式正确的是( D );
    A. f(x)dx=ex\int f'(x)dx=e^{-x}
    B. f(x)dx=ex\int f(x)dx=e^{-x}
    C. d[f(x)dx]=exdxd[\int f'(x) dx]'=e^{-x}dx
    D. d[f(x)dx]=exdxd [\int f(x) dx]=-e^{-x}dx
    解析:A、B最外层为\int ,最后没有CC,错误;
    例题3:若f(x)f(x)的一个原函数是cosx\cos x,则f(x)=f'(x)=();
    A. sinx\sin x
    B. sinx-\sin x
    C. cosx-\cos x
    D. cosx\cos x
    解析:cosxsinxcosx\cos x \to -\sin x \to -\cos x
    例题4:设F(x)F(x)lncosx\ln \cos x的一个原函数,则dF(x)=dF(x)=(lncosxdx\ln \cos x dx{\color{Red} } );
    例题5:设f(x)f(x)可导,则d[f(2x)dx]=d[\int f(2x)dx]=(C);
    A. f(2x)f(2x) B. f(2x)+Cf(2x)+C C. f(2x)dxf(2x)dx D. f(2x)dxf'(2x)dx
    解析:A,B最外层为dd,最后没有dxdx,错误;

直接积分法

根据基本积分公式以及第一第二基本性质;
例题1:求(ex3cosx)dx\int (e^x-3\cos x)dx
解:原式=exdx3cosxdx=\int e^xdx-3\int \cos x dx
=ex3sinx+C=e^x-3\sin x+C
例题2:求x(x25)dx\int \sqrt{x}(x^2-5)dx
解:原式=(x525x12)dx=\int (x^{\frac{5}{2}}-5x^{\frac{1}{2} })dx
x52dx5x12\int x^{\frac{5}{2} }dx-5\int x^{\frac{1}{2} }
=27x72103x32+C=\frac{2}{7}x^{\frac{7}{2} }-\frac{10}{3}x^{\frac{3}{2} }+C
=27x72103x+C=\frac{2}{7}x^{\frac{7}{2} }-\frac{10}{3}\sqrt{x}+C
例题3:求dxx3\int \frac{dx}{x^3}
解:原式=1x3dx=\int \frac{1}{x^{3} }dx
=x22+C=-\frac{x-2}{2}+C
=12x2+C=-\frac{1}{2x^2}+C
例题4:求dxx3x3dx\int \frac{dx}{x^3\sqrt[3]{x} }dx
解:原式=x43dx=\int x^{-\frac{4}{3} }dx
=x1313+C=\frac{x^{-\frac{1}{3} } }{-\frac{1}{3} }+C
=3x3+C=-\frac{3}{\sqrt[3]{x} }+C
例题5:求(21+x2121x2+3x)dx\int (\frac{2}{1+x^2}-\frac{1}{2\sqrt{1-x^2} }+\frac{3}{x} )dx
解:原式=211+x2dx1211x2dx+31xdx=2\int \frac{1}{1+x^2}dx-\frac{1}{2}\int \frac{1}{\sqrt{1-x^2} }dx+3\int \frac{1}{x}dx
=2arctanx12arcsinx+3lnx+C=2\arctan x-\frac{1}{2} \arcsin x+3\ln |x|+C


利用平方差、立方差、完全平方、三角恒等式、二倍角公式等对被积函数进行恒等变形,拆分成可以直接积分的和或差的形式。
例题6:求(xx3)2dx\int (\sqrt{x}-\sqrt[3]{x} )^2dx
解:原式=((x)2+(x3)22xx3)dx=\int ((\sqrt{x} )^2+(\sqrt[3]{x})^2-2\sqrt{x} \cdot \sqrt[3]{x} )dx
=(x+x232x56dx=\int (x +x^{\frac{2}{3} } -2x^{\frac{5}{6} }dx
=12x2+x53532x116116+C=\frac{1}{2}x^2+\frac{x^{\frac{5}{3} } }{\frac{5}{3} }-2\frac{x^{\frac{11}{6} } }{\frac{11}{6} }+C
=12x2+35x531211x116+C=\frac{1}{2}x^2+\frac{3}{5}x^{\frac{5}{3} }-\frac{12}{11}x^{\frac{11}{6} }+C
例题7:求(x1)3x2dx\int \frac{(x-1)^3}{x^2}dx
二项式定理
解:原式=x33x2+3x1x2dx=\int \frac{x^3-3x^2+3x-1}{x^2}dx
=(x3+3x1x2)dx=\int (x-3+\frac{3}{x}-\frac{1}{x^2} )dx
=12x23x+3lnx+1x+C=\frac{1}{2}x^2-3x+3\ln |x|+\frac{1}{x}+C
例题8:求2+3x21+x2dx\int \frac{2+3x^2}{1+x^2}dx
解:原式=3+3x211+x2dx=\int \frac{3+3x^2-1}{1+x^2}dx
=(3+11+x2)dx=\int (3+\frac{1}{1+x^2} )dx
=3xarctanx+C=3x-\arctan x+C
例题9:求1x25x+6dx\int \frac{1}{x^2-5x+6}dx
解:原式=1(x3)(x2)dx=\int \frac{1}{(x-3)(x-2)}dx
解析1(x2)(z3)ax2bx3{\color{Violet} \frac{1}{(x-2)(z-3)} \longrightarrow \frac{a}{x-2}-\frac{b}{x-3 } }
求出a,ba,b,得a=b=1a=b=-1
=(1x31x2)dx=\int (\frac{1}{x-3}-\frac{1}{x-2} )dx
=lnx3lnx2+C=\ln |x-3|-\ln |x-2|+C
=lnx3x2+C=\ln |\frac{x-3}{x-2} |+C
例题10:求cos2xcos2xsin2xdx\int \frac{\cos 2x}{\cos^2x \sin^2x}dx
二倍角公式:cos2x=cos2xsin2x=2cos2x1=12sin2x{\color{Red} \cos 2x=\cos^2x-\sin^2x}=2\cos^2x-1=1-2\sin^2x
使用公式:1cos2xdx=sec2xdx=tanx+C{\color{Blue} \int \frac{1}{\cos^2x}dx=\int \sec^2xdx=\tan x+C }
1sin2xdx=csc2xdx=cotx+C{\color{Blue} \int \frac{1}{\sin^2x}dx=\int \csc^2xdx=-\cot x+C }
=(1sin2x1cos2x)dx=\int (\frac{1}{\sin^2x}-\frac{1}{\cos^2x} )dx
解:原式 =cos2xsin2xcos2xsin2xdx=\int \frac{\cos^2x-\sin^2x}{\cos^2x \sin^2x}dx
=(1sin2x1cos2x)dx=\int (\frac{1}{\sin^2x}-\frac{1}{\cos^2x} )dx
=cotxtanx+C=-\cot x-\tan x+C
例题11:求sin2x2dx\int \sin^2\frac{x}{2}dx
有二倍角公式cos2x=12sin2x\cos 2x=1-2\sin^2x
x=x2x=\frac{x}{2}
cosx=12sin2x2\cos x=1-2\sin^2\frac{x}{2}
sin2x2=1cosx2\sin^2\frac{x}{2}=\frac{1-\cos x}{2}
解:原式=(1212cosx)dx=\int (\frac{1}{2}-\frac{1}{2}\cos x)dx
=12x12sinx+C=\frac{1}{2}x-\frac{1}{2}\sin x+C
例题12:求tan2xdx\int \tan^2xdx
有公式tan2x=sec2x1\tan^2x=\sec^2x-1
sec2xdx=tanx+C\int \sec^2xdx=\tan x+C
解:原式=(sec2x1)dx=tanxx+C=\int (\sec^2x-1)dx=\tan x-x+C
基本代数式,可做恒等变形
(1). (a+b)2=a2+2ab+b2{\color{Red} (a+b)^2=a^2+2ab+b^2}
(2). (ab)2=a22ab+b2{\color{Red} (a-b)^2=a^2-2ab+b^2}
(3). (a+b)3=a3+3a2b+3ab2+b3{\color{Red} (a+b)^3=a^3+3a^2b+3ab^2+b^3}
(4). (ab)3=a33a2b+3ab2b3{\color{Red} (a-b)^3=a^3-3a^2b+3ab^2-b^3}
(5). a2b2=(a+b)(ab){\color{Red} a^2-b^2=(a+b)(a-b)}
(6). a3b3=(ab)(a2+ab+b2){\color{Red} a^3-b^3=(a-b)(a^2+ab+b^2)}
(7). a3+b3=(a+b)(a2ab+b2){\color{Red} a^3+b^3=(a+b)(a^2-ab+b^2)}


(a).cos2x=cos2xsin2x=2cos2x1=12sin2x{\color{Purple} \cos 2x=\cos^2x-\sin^2x=2\cos^2x-1=1-2\sin^2x}
(b). sin2x=2sinxcosx{\color{Purple} \sin 2x=2\sin x \cos x}
(c). sinx2+cosx2=1{\color{Purple} \sin x^2+\cos x^2 =1}
(d). tanx2+1=secx2{\color{Purple} \tan x^2+1=\sec x^2}
(e). 1cotx2=cscx2{\color{Purple} 1-\cot x^2=\csc x^2}


第一类换元法(凑微分法)

积分式较为复杂,不能直接套用基本积分公式,整体结构为uf(u)dx\int u'f(u)dx;
我们需要将uf(u)dxu'f(u)dx变为dudu的形式,将积分式转化为可以使用的基本积分公式f(u)du\int f(u)du,利用基本积分公式解决问题,即凑微分法。
例题1:求cos2xsinxdx\int \cos^2x\sin xdx
解:原式=cos2x(sinx)dx=-\int \cos^2x \cdot (-\sin x)dx
=cos2xdsinx=-\int \cos^2xd\sin x
=13cos3x+C=-\frac{1}{3}\cos^3x+C
例题2:求2cos2xdx\int 2\cos 2xdx
解:原式=cos2x2dx=\int \cos 2x \cdot 2dx
=cos2xd2x=\int \cos 2xd 2x
=sin2x+C=\sin 2x+C
例题3:求2xex2dx\int 2xe^{x^2}dx
解:原式=ex22xdx=\int e^{x^2}\cdot 2xdx
=ex2dx2=e^{x^2}dx^2
=ex2+C=e^{x^2}+C
例题4:求12x+3dx\int \frac{1}{2x+3}dx
解:原式=1212x+32dx=\frac{1}{2}\int \frac{1}{2x+3}2dx
=1212x+32dxd(2x+3)=\frac{1}{2}\int \frac{1}{2x+3}2dxd(2x+3)
=12ln2x+3+C=\frac{1}{2}\ln |2x+3|+C


总结公式1ax+bdx=1alnax+b+C(a0){\color{Red} \int \frac{1}{ax+b}dx=\frac{1}{a}ln|ax+b|+C (a \ne 0) }


例题5:求14+x2dx\int \frac{1}{4+x^2}dx
解析:公式11+x2dx=arctanx+C11+2d=arctan+C\int \frac{1}{1+x^2}dx=\arctan x+C\Longrightarrow \int \frac{1}{1+\Box ^2} d\Box =\arctan \Box +C
解:原式=1411+(x2)2dx=\frac{1}{4}\cdot \frac{1}{1+(\frac{x}{2})^2}dx
=1211+(x2)212dx=\frac{1}{2} \int \frac{1}{1+(\frac{x}{2})^2}\cdot \frac{1}{2}dx
=1211+x2dx2=\frac{1}{2} \int \frac{1}{1+x^2}d\frac{x}{2}
=12arctanx+C=\frac{1}{2} \arctan x+C


总结公式1a2+x2dx=1aarctanxa+C(a0){\color{Red} \int \frac{1}{a^2+x^2}dx=\frac{1}{a}\arctan \frac{x}{a}+C (a \ne 0) }


例题6:求1x21dx\int \frac{1}{x^2-1}dx
解析:同上章例题9;
解:原式=12(1(x1)1x+1)dx=\frac{1}{2}\int (\frac{1}{(x-1)}-\frac{1}{x+1})dx
=(12(x1)12(x+1))dx=\int (\frac{1}{2(x-1)}-\frac{1}{2(x+1)} )dx
=121x112dx1x+1dx=\frac{1}{2}\int \frac{1}{x-1}-\frac{1}{2}dx \int \frac{1}{x+1}dx
=121x1d(x1)121x+1d(x+1)=\frac{1}{2}\int \frac{1}{x-1}d(x-1)-\frac{1}{2}\int \frac{1}{x+1}d(x+1)
=12lnx112lnx+1+C=\frac{1}{2}\ln |x-1|-\frac{1}{2}\ln |x+1|+C
=12lnx1x+1+C=\frac{1}{2}\ln |\frac{x-1}{x+1} |+C


总结公式1x2a2dx=12alnxax+a+C(a0){\color{Red} \int \frac{1}{x^2-a^2}dx=\frac{1}{2a}\ln |\frac{x-a}{x+a}|+C (a \ne 0) }


例题7:求14x2dx\int \frac{1}{\sqrt{4-x^2} }dx
解析:公式1(1x2)dx=arcsinx+C112d=arcsin+C\int \frac{1}{\sqrt(1-x^2)}dx=\arcsin x+C\Longrightarrow \int \frac{1}{1-\Box ^2} d\Box =\arcsin \Box +C
解:原式=14x2dx=\int \frac{1}{\sqrt{4-x^2} }dx
=11x244dx=\int \frac{1}{\sqrt{1-\frac{x^2}{4}\cdot 4} } dx
=121(x2)2dx=\int \frac{1}{2\cdot \sqrt{1-(\frac{x}{2})^2} }dx
=11(x2)212dx=\int \frac{1}{\sqrt{1-(\frac{x}{2})^2} }\cdot \frac{1}{2}dx
=11(x2)2d(x2)=\int \frac{1}{\sqrt{1-(\frac{x}{2})^2} }d(\frac{x}{2})
=arcsinx2+C=\arcsin \frac{x}{2}+C


总结公式1a2x2dx=arcsinxa+C(a>0){\color{Red} \int \frac{1}{\sqrt{a^2-x^2} }dx=\arcsin \frac{x}{a}|+C (a > 0) }


例题8:求exxdx\int \frac{e^{\sqrt{x} } }{\sqrt{x} }dx
解:原式=ex1x122dx=\int e^{\sqrt{x} } \cdot \frac{1}{\sqrt{x} }\cdot \frac{1}{2} \cdot 2dx
=2e2xdx=2\int e^{2\sqrt{x} }dx
=2exdx=2\int e^{\sqrt{x} }d\sqrt{x}
=2ex+C=2e^{\sqrt{x} }+C
例题9:求tanxdx\int \tan xdx
解:原式=sinxcosxdx=\int \frac{\sin x}{\cos x}dx
=1cosxdcosx=-\int \frac{1}{\cos x}d\cos x
=lncosx+C=-\ln |\cos x|+C


总结公式tanxdx=lncosx+C{\color{Red} \int \tan xdx=-\ln | \cos x|+C }


例题10:求secxdx\int \sec xdx
解析:1cos2xdx=sec2xdx=tanx+C\int \frac{1}{\cos^2x}dx=\int \sec^2xdx=\tan x+C
secxtanxdx=secx+C\int \sec x\tan xdx=\sec x+C
解:原式=secx(secx+tanx)secx+tanxdx=\int \frac{\sec x \cdot (\sec x+\tan x)}{\sec x+\tan x}dx
=sec2x+secxtanx)secx+tanxdx=\int \frac{\sec^2x+\sec x\cdot \tan x)}{\sec x+\tan x}dx
=1secx+tanxd(secx+tanx)=\int \frac{1}{\sec x+\tan x}d(\sec x+\tan x)
=lnsecx+tanx+C=\ln |\sec x+\tan x|+C


总结公式secxdx=lnsecx+tanx+C{\color{Red} \int \sec xdx=\ln |\sec x+\tan x|+C }


例题11:求sin3xdx\int \sin^3xdx
解:原式=sinxsin2xdx=\int \sin x\cdot \sin^2xdx
=(1cos2x)(sinx)dx=\int (1-\cos^2x)\cdot (-\sin x)dx
=(cos2x1)d(cosx)=\int (\cos^2x-1)d(\cos x)
=cos2xd(cosx)1d(cosx)=\int \cos^2xd(\cos x)-\int 1d(\cos x)
=13cos3xcosx+C=\frac{1}{3}\cos^3x-\cos x+C
例题12:求x2(x+1)3dx\int \frac{x^2}{(x+1)^3}dx
解:令x+1=t,x=t1,dx=d(t1)=dtx+1=t,x=t-1,dx=d(t-1)=dt
原式=(t1)2t3dt=\int \frac{(t-1)^2}{t^3}dt
=t22t+1t3dt=\int \frac{t^2-2t+1}{t^3}dt
=(1t2t2+1t3)dt=\int (\frac{1}{t}-\frac{2}{t^2}+\frac{1}{t^3} )dt
=lnt+2t12t2+C=\ln |t|+\frac{2}{t}-\frac{1}{2t^2}+C
=lnx+1+2x+112(x+1)2+C=\ln |x+1|+\frac{2}{x+1}-\frac{1}{2(x+1)^2}+C
例题13:求(x+2)3(x+3)dx\int \frac{(x+2)^3}{(x+3)}dx
解:令x+3=t,x=t3,dx=d(t3)=dtx+3=t,x=t-3,dx=d(t-3)=dt
原式=(t1)3tdt= \int \frac{(t-1)^3}{t}dt
=(t33t2+3t1t2)dt=\int (\frac{t^3-3t^2+3t-1}{t^2} )dt
=(t3+3t1t2)dt=\int (t-3+\frac{3}{t}-\frac{1}{t^2} )dt
=t223t+3lnt+1t+C=\frac{t^2}{2}-3t+3\ln |t|+\frac{1}{t}+C
=12(x+3)23(x+3)+3lnx+3+1x+3+C=\frac{1}{2}(x+3)^2-3(x+3)+3\ln |x+3|+\frac{1}{x+3}+C


第二类换元法(根式代换法)

例题1:求11+2x+3dx\int \frac{1}{1+\sqrt{2x+3} }dx
解:令2x+3=t2,x=t232,dx=tdt2x+3=t^2,x=\frac{t^2-3}{2},dx=tdt
原式=11+ttdt= \int \frac{1}{1+t}tdt
=t+111+tdt=\int \frac{t+1-1}{1+t}dt
=(111+t)=(1-\frac{1}{1+t})
=tln1+t+C=t-\ln|1+t|+C
=2x+3ln2x+3+1+C=\sqrt{2x+3}-\ln |\sqrt{2x+3}+1|+C
“1型”根式代换:式子中含有ax+bn\sqrt[n]{ax+b}
例题2:求2x+x3dx\int \frac{2}{x+\sqrt[3]{x} }dx
解:令x=t3,x13=t,dx=3t2dtx=t^3,x^{\frac{1}{3} }=t,dx=3t^2dt
原式=2t3+t3t2dt=\int \frac{2}{t^3+t}3t^2dt
=6tt2+1dt=\int \frac{6t}{t^2+1}dt
=31t2+1d(t2+1)=3\int \frac{1}{t^2+1}d(t^2+1)
=3lnt2+1+C=3\ln |t^2+1|+C
=3lnx23+1+C=3\ln x^{\frac{2}{3} +1}+C
例题3:求x3x+13dx\int x\sqrt[3]{3x+1}dx
解:令3x+13=t,x=13t313,dx=d(13t313)=t2dt\sqrt[3]{3x+1}=t,x=\frac{1}{3}t^3-\frac{1}{3},dx=d(\frac{1}{3t^3-\frac{1}{3} })=t^2dt
原式=(13t313)tt2dt=\int (\frac{1}{3}t^3-\frac{1}{3} )t\cdot t^2dt
=(13t613t3)dt=\int (\frac{1}{3}t^6-\frac{1}{3}t^3)dt
=121t7112t4+C=\frac{1}{21}t^7-\frac{1}{12}t^4+C
=121(3x+1)73112(3x+1)43+C=\frac{1}{21}(3x+1)^{\frac{7}{3} }-\frac{1}{12}(3x+1)^{\frac{4}{3} }+C
“2型”根式代换:式子中同时含有xm\sqrt[m]{x} xn\sqrt[n]{x}
t=xm,n,[m,n]t=\sqrt[m,n]{x},[m,n]代表mmnn最小公倍数
例题4:求1x+x4dx\int \frac{1}{\sqrt{x}+\sqrt[4]{x} }dx
解:令x4=t,x=t4,dx=dt4=4t3dt\sqrt[4]{x}=t,x=t^4,dx=dt^4=4t^3dt
原式=1t2+t4t3dt=\int \frac{1}{t^2+t}4t^3dt
=4t2t+1dt=4\frac{t^2}{t+1}dt
t+1=u,t=u1,dt=d(u1)=dut+1=u,t=u-1,dt=d(u-1)=du
原式4(u1)2udu4\int \frac{(u-1)^2}{u}du
=4u22u+1udu=4\int \frac{u^2-2u+1}{u}du
=4(u2+1u)dx=4\int (u-2+\frac{1}{u})dx
=2(u)8u+4lnu+C=2(u)-8u+4\ln |u|+C
=2(x4+1)28(x3+1)+4ln(x4+1)+C=2(\sqrt[4]{x}+1)^2-8(\sqrt[3]{x}+1)+4\ln (\sqrt[4]{x}+1)+C
例题5:求x33x+x3dx\int x\frac{\sqrt[3]{3} }{\sqrt{x}+\sqrt[3]{x} }dx
解:令x6=t,x=t6,dx=dt6=6t5dt\sqrt[6]{x}=t,x=t^6,dx=dt^6=6t^5dt
原式=t2t6(t3t2)6t5dt=\int \frac{t^2}{t^6 \cdot (t^3-t^2) }\cdot 6t^5 dt
61t2+tdt6\int\frac{1}{t^2+t}dt
=61t1(t+1)dt=6\int \frac{1}{t}-\frac{1}{(t+1)}dt
=6lnt6lnt+1+C=6\ln t-6\ln |t+1|+C
=6lntt+1+C=6\ln |\frac{t}{t+1}|+C
=6ln(x6)6x6+1+C=6\ln \frac{(\sqrt[6]{x}) }{6\sqrt[6]{x}+1}+C
一般当被积函数含有:
(1). a2x2\sqrt{a^2-x^2} ,可以代换x=asinux=a\sin u
(2). x2+a2\sqrt{x^2+a^2} ,可以代换x=atanux=a\tan u
(3). x2a2\sqrt{x^2-a^2} ,可以代换x=asecux=a\sec u
通常称以上代换为三角代换,当被积函数含有以上二次根式,积分时是否一定使用三角代换。
例题6:计算x+arcsinx1x2dx\int \frac{x+\arcsin x}{\sqrt{1-x^2} }dx
解:原式=x1x2dx+arcsinx1x2dx=\int \frac{x}{\sqrt{1-x^2} }dx+\int \frac{\arcsin x}{\sqrt{1-x^2} }dx
=x11x2dx+arcsinx11x2dx=\int x \cdot \frac{1}{\sqrt{1-x^2} }dx+\int \arcsin x \cdot \frac{1}{\sqrt{1-x^2} }dx
=1211x2dx2+arcsinxd(arcsinx)=\frac{1}{2} \int \frac{1}{\sqrt{1-x^2} }dx^2+\int \arcsin x d (\arcsin x )
=1211x2d(1x2)+12arcsinx=\frac{1}{2} \int \frac{1}{\sqrt{1-x^2} }d(1-x^2)+\frac{1}{2}\arcsin x
=12121x2+12arcsin2x+C=\frac{1}{2} -\frac{1}{2}\cdot \sqrt{1-x^2}+\frac{1}{2} \arcsin^2x+C
=121x2+12arcsin2x+C=\frac{1}{2} -\sqrt{1-x^2}+\frac{1}{2}\arcsin^2x+C
第二类换元法常见类型:
(1). f(x,ax+bn)dx\int f(x,\sqrt[n]{ax+b})dx,令t=ax+bnt=\sqrt[n]{ax+b}
(2). f(x,ax+bcx+dn)dx\int f(x,\sqrt[n]{\frac{ax+b}{cx+d} })dx,令t=ax+bcx+dnt=\sqrt[n]{\frac{ax+b}{cx+d} }
(3). f(x,a2x2)dx\int f(x,\sqrt{a^2-x^2})dx,令x=asin/x=acostx=a\sin / x=a\cos t
(4). f(x,a2+x2)dx\int f(x,\sqrt{a^2+x^2})dx,令x=atantx=a\tan t
(5). f(x,x2a2)dx\int f(x,\sqrt{x^2-a^2})dx,令x=asectx=a\sec t
(6). f(ax)dx\int f(a^x)dx,令t=axt=a^x
分母中因子次数较高时,可以使用倒代换。
常用基本积分公式:
tanxdx=lncosx+C\int \tan xdx=-\ln|\cos x|+C
cotxdx=lnsinx+C\int \cot xdx=\ln |\sin x |+C
secxdx=lnsecx+tanx+C\int \sec xdx=\ln |\sec x+\tan x |+C
cscxdx=lncscxcotx+C\int \csc xdx=\ln |\csc x-\cot x |+C
1a2+x2dx=1aarctanxa+C\int \frac{1}{a^2+x^2 }dx=\frac{1}{a} \arctan \frac{x}{a}+C


分部积分法

公式:uvdx=udv=uvuvdx=uvvdu\int uv' dx=\int udv=uv-\int u'v dx=uv-\int vdu
反对幂指三
例题1:求xarctanxdx\int x\arctan xdx
解:原式=arctanxxd(12x2)=\int \arctan x \cdot xd(\frac{1}{2}x^2)
12arctanxdx2\frac{1}{2}\int \arctan xdx^2
=12(x2arctanxx2d(arctanx))=\frac{1}{2}(x^2\arctan x-\int x^2d(\arctan x))
=12(x2arctanxx211+x2dx)=\frac{1}{2}(x^2\arctan x-\int x^2\cdot \frac{1}{1+x^2}dx)
=12(x2arctanxx2+111+x2dx)=\frac{1}{2}(x^2\arctan x-\int \frac{x^2+1-1}{1+x^2}dx)
=12(x2arctanx111+x2dx)=\frac{1}{2}(x^2\arctan x-\int 1-\frac{1}{1+x^2}dx)
=12(x2arctanxx+arctanx)+C=\frac{1}{2}(x^2\arctan x-x+\arctan x)+C
例题2:求arctanxdx\int \arctan xdx
解:原式=xarctanxxd(arctanx)=x\arctan x-\int xd(\arctan x)
=xarctanxx11+x2dx=x\arctan x-\int x\cdot \frac{1}{1+x^2}dx
=xarctanx1211+x2dx2=x\arctan x-\frac{1}{2}\int \frac{1}{1+x^2}dx^2
=xarctanx12ln(1+x2)=x\arctan x-\frac{1}{2}\ln (1+x^2)
总结:{\color{Red} \int udv=uv-\int vdu}
例题3:求x3lnxdx\int x^3\ln xdx
解:原式=lnxxd(14x4)=\int \ln x \cdot xd(\frac{1}{4}x^4)
=14lnxdx4=\frac{1}{4}\int \ln xdx^4
=14(x4lnxx4d(lnx))=\frac{1}{4}(x^4\ln x-\int x^4d(\ln x))
=14(x4lnxx41xdx)=\frac{1}{4}(x^4\ln x-\int x^4\cdot \frac{1}{x}dx)
=14(x4lnxx3dx)=\frac{1}{4}(x^4\ln x-\int x^3dx)
=14x4lnx116x4+C=\frac{1}{4}x^4\ln x-\frac{1}{16}x^4+C
例题4:求exsinxdx\int e^x\sin xdx
解:原式=exd(cosx)=\int e^xd(-\cos x)
=exd(cosx)=-\int e^xd(\cos x)
=(excosxcosxd(ex))=-(e^x \cdot \cos x-\int \cos xd(e^x))
=(cosxexcosxexdx)=-(\cos x \cdot e^x-\int \cos x\cdot e^x dx)
=cosxex+exdsinx=-\cos x \cdot e^x+\int e^x d\sin x
=cosxex+sinxexsinxdex=-\cos x \cdot e^x+\sin x \cdot e^x-\int \sin xde^x
=cosxex+sinxexexsinxdx=-\cos x \cdot e^x+\sin x \cdot e^x-\int e^x\cdot \sin xdx
exsinxdx=cosxex+sinxexexsinxdx\int e^x\sin xdx=-\cos x \cdot e^x+\sin x \cdot e^x-\int e^x\cdot \sin xdx
2exsinxdx=cosxexsinxex2\int e^x\sin xdx=-\cos x \cdot e^x-\sin x \cdot e^x
exsinxdx=cosxex+exsinx2+C\int e^x\sin xdx =\frac{-\cos x \cdot e^x+e^x \cdot \sin x }{2}+C


定积分

定积分的概念

  1. 概念
    指用来求曲边图形面积的工具,记为abf(x)dx\int_a^b f(x)dx,其中a,ba,b为积分上下限,f(x)f(x)为被积函数。
  2. 定积分的几何意义abf(x)dx\int_a^b f(x)dx表示曲线y=f(x)y=f(x)xx轴以及直线x=a,x=bx=a,x=b所围成的各部分的面积的代数和。 f(x)>0,abf(x)dx>0f(x)>0,\int_a^b f(x)dx>0 f(x)<0,abf(x)dx<0f(x)<0,\int_a^b f(x)dx < 0
  3. 定积分比较大小 f(x)g(x)f(x)\geq g(x),则abf(x)dxabg(x)dx\int_a^b f(x)dx\geq \int_a^b g(x)dx 例题1:比较0π2xdx\int_0^{\frac{\pi}{2} } xdx0π2sinxdx\int_0^{\frac{\pi}{2} } \sin xdx的大小.
    解:f(x)=x,g(x)=sinxf(x)=x,g(x)=\sin x f(x)g(x)f(x)\geq g(x) 0π2xdx>0π2sinxdx\int_0^{\frac{\pi}{2} } xdx > \int_0^{\frac{\pi}{2} } \sin xdx

例题2:比较01exdx\int_0^1 e^xdx01ex2dx\int_0^1 e^{x^2} dx的大小.
解:从x(0,1)x \in (0,1)比较x,x2x,x^2,取一特殊值比较大小。
01exdx>01ex2dx\int_0^1 e^xdx > \int_0^1 e^{x^2} dx

  1. 定积分的性质
    (1). abf(x)±g(x)dx=abf(x)dx+abg(x)dx\int_a^b f(x)\pm g(x)dx=\int_a^b f(x)dx+\int_a^b g(x)dx
    (2). abkf(x)dx=kabf(x)dx(kx无关)\int_a^b k\cdot f(x)dx=k\int_a^b f(x)dx(k与x无关)
    (3). abf(x)dx=acf(x)dx+cbf(x)dx\int_a^b f(x)dx=\int_a^c f(x)dx+\int_c^b f(x)dx
    (4). abf(x)dx=ba\int_a^b f(x)dx=-\int_b^a (上下限调换,添负号)
    (5). ab1dx+abdx=ba\int_a^b 1dx+\int_a^b dx=b-a
    例题3:设f(x)f(x)[a,b][a,b]上连续,下列不正确的是()
    A. 0xf(t)dt\int_0^x f(t)dtf(x)f(x)的一个原函数
    B. xbf(t)dt\int_x^b f(t)dtf(x)-f(x)的一个原函数
    C. abf(t)dt\int_a^b f(t)dtf(x)f(x)的一个原函数
    D. f(x)f(x)[a,b][a,b]上可积
    解析:f(x)f(x)[a,b][a,b]上连续,0xf(t)dt\int_0^x f(t)dt(0xf(t)dt)=f(x)(\int_0^x f(t)dt)'=f(x)的一个原函数,xbf(t)dt\int_x^b f(t)dt(xbf(t)dt)=0f(x)(\int_x^b f(t)dt)'=0-f(x)的一个原函数,abf(t)dt\int_a^b f(t)dt不是f(x)f(x)的一个原函数定积分是一个数字,所以f(x)=0定积分是一个数字,所以f(x)=0f(x)f(x)[a,b][a,b]上可积,故选C.

定积分的计算

定积分两个公式

牛顿-莱布尼茨公式:abf(x)dx=F(x)ba=F(b)F(a)\int_a^b f(x)dx=F(x)|\begin{matrix}b\\a\end{matrix}=F(b)-F(a)
分部积分公式:abuvdx=abudv=uvbaabvudx\int_a^b uv' dx=\int_a^b udv=uv|\begin{matrix}b\\a\end{matrix}-\int_a^b vu' dx
例题1:求01(x2+x+2)dx\int_0^1 (x^2+x+2)dx
解:原式=(13x3+12x2+2x)10=(\frac{1}{3}x^3+\frac{1}{2}x^2+2x)|\begin{matrix}1\\0\end{matrix}
=13+12+20=176=\frac{1}{3}+\frac{1}{2}+2-0=\frac{17}{6}
例题2:求0π2cos2xcosxsinxdx\int_0^{\frac{\pi}{2}} \frac{\cos 2x}{\cos x-\sin x}dx
解:原式=0π2(cosxsinx)(sinx+cosx)cosxsinxdx=\int_0^{\frac{\pi}{2}} \frac{(\cos x-\sin x)\cdot (\sin x+\cos x )}{\cos x-\sin x}dx
=0π2sinx+cosxdx=\int_0^{\frac{\pi}{2}} \sin x+\cos x dx
=(cosx+sinx)π20=(-\cos x+\sin x)|\begin{matrix}\frac{\pi}{2}\\0\end{matrix}
=(0+1)(1+0)=(0+1)-(-1+0)
=2=2
例题3:求12e1x1x2dx\int_1^2 e^{\frac{1}{x} }\cdot \frac{1}{x^2}dx
解:原式=12e1x(1x)dx=\int_1^2 e^{\frac{1}{x} }\cdot (-\frac{1}{x})'dx
=12e1xd(1x)=-\int_1^2 e^{\frac{1}{x} }d(\frac{1}{x})
=e1x21=-e^{\frac{1}{x} }|\begin{matrix}2\\1\end{matrix}
=e12+e=-e^{\frac{1}{2} }+e
例题4:求01xexdx\int_0^1 x\cdot e^{-x}dx
解:原式=01xd(ex)=\int_0^1 x d(-e^{-x})
=(xex1001exdx)=-(x\cdot e^{-x}|\begin{matrix}1\\0\end{matrix}-\int_0^1e^{-x}dx)
=(xex10+ex10)=-(xe^{-x}|\begin{matrix}1\\0\end{matrix}+e^{-x}|\begin{matrix}1\\0\end{matrix})
=(e1+e11=-(e^{-1}+e^{-1}-1
=2e1+1=12e=-2e^{-1}+1=1-\frac{2}{e}


定积分四个运算技巧
  1. 定积分偶倍奇零(条件:区间对称aaf(x)dx={20af(x)dx,f(x)为偶函数0f(x)为奇函数\int_{-a}^{a} f(x)dx=\left\{\begin{matrix}2\int_{0}^{a} f(x)dx,f(x)为偶函数\\0,f(x)为奇函数\end{matrix}\right. {常见偶函数:C,x偶数,x,cosx,f(x)+f(x)常见奇函数:x奇数,sinx,arctanx,f(x)f(x)\left\{\begin{matrix}常见偶函数:C,x^{偶数},|x|,\cos x,f(x)+f(-x) \\常见奇函数:x^{奇数},\sin x,\arctan x,f(x)-f(-x)\end{matrix}\right. 使用技巧:加减运算,分开独立判断奇偶性;
    例题1:求11(x3cosx+1)dx=(D)\int_{-1}^{1} (x^3\cos x+1)dx=(D) A.0B.12C.1D.2A. 0 B. \frac{1}{2} C. 1 D. 2 解析:x3cosxx^3\cos x为奇函数,1为偶函数,故原式为2011dx=22\int_0^1 1dx=2
    例题2:设f(x)f(x)[l,l][-l,l]上连续,则llf(x)f(x)dx=(0)\int_{-l}^{l} f(x)-f(-x)dx=(0)
    解析:f(x)f(x)f(x)-f(-x)为奇函数,故原式为00
    例题3:112+sinx1+x2dx\int_{-1}^{1} \frac{2+\sin x}{1+x^2}dx
    解:原式=1121+x2dx+11sinx1+x2=\int_{-1}^{1} \frac{2}{1+x^2}dx+\int_{-1}^{1}\frac{\sin x}{1+x^2}
    函数21+x2\frac{2}{1+x^2}为偶函数,sinx1+x2\frac{\sin x}{1+x^2}为奇函数
    故原式为220111+x2dx+0=4arctanx10=4(arctan1arctan0)=π2\cdot 2\int_0^1 \frac{1}{1+x^2}dx+0=4\arctan x|\begin{matrix}1\\0\end{matrix}=4(\arctan 1-\arctan 0)=\pi
    例题4:求定积分ππ(1+cosx+xx)dx\int_{-\pi}^{\pi} (\sqrt{1+\cos x}+|x|\cdot x)dx 1+cosx\sqrt{1+\cos x}为偶函数,xx|x|\cdot x为奇函数 解:原式=20π1+cosxdx=2\int_{0}^{\pi} \sqrt{1+\cos x}dx =20π2cosx2dx=2\int_{0}^{\pi} \sqrt{2}\cdot \cos \frac{x}{2}dx =2220πcosx2d(x2)=2\cdot 2\sqrt{2} \int_{0}^{\pi} \cos \frac{x}{2}d(\frac{x}{2}) =420πcosx2d(x2)=4\sqrt{2}\int_{0}^{\pi} \cos \frac{x}{2} d(\frac{x}{2}) =42sinx2π0=4\sqrt{2} \sin \frac{x}{2}|\begin{matrix}\pi\\0\end{matrix} =42(sinπ2sin0)=4\sqrt{2}\cdot(\sin \frac{\pi}{2}-\sin 0) =42=4\sqrt{2}
  2. 定积分点火公式(华里氏公式)
    条件:积分区间为(0,π2)(0,\frac{\pi}{2})
    公式:0π2sinnxdx=0π2cosnxdx={n1nn3n212π2n为偶数n1nn3n2231n为奇数\int_{0}^{\frac{\pi }{2} }\sin ^nxdx=\int_{0}^{\frac{\pi }{2} }\cos ^nxdx=\left\{\begin{matrix}\frac{n-1}{n}\cdot \frac{n-3}{n-2}\dots \frac{1}{2}\cdot \frac{\pi }{2} ,n为偶数 \\\frac{n-1}{n}\cdot \frac{n-3}{n-2}\dots \frac{2}{3}\cdot 1 ,n为奇数 \end{matrix}\right.
    注意:0πsinnxdx=20π2sinnxdx{\color{Red} \int_{0}^{\pi }\sin ^n xdx=2\int_{0}^{\frac{\pi }{2} } \sin ^n xdx }
    例题5: 求0π2cos6xdx\int_{0}^{\frac{\pi }{2} }\cos ^6xdx
    解:原式=563412π2=5π64=\frac{5}{6}\cdot \frac{3}{4}\cdot \frac{1}{2}\cdot \frac{\pi }{2}=\frac{5\pi }{64}
    例题6:求0π2sin5xdx\int_{0}^{\frac{\pi }{2} }\sin ^5xdx
    解:原式=4523121=415=\frac{4}{5}\cdot \frac{2}{3}\cdot \frac{1}{2}\cdot 1=\frac{4}{15}
    例题6:求π2π2(sin4θ+cos3θ)dθ\int_{-\frac{\pi}{2} }^{\frac{\pi }{2} }(\sin ^4\theta +\cos ^3\theta )d\theta
    解:原式=20π2(sin4θ+cos3θ)dθ=2\int_0^{\frac{\pi}{2} }(\sin ^4\theta +\cos ^3\theta )d\theta =2(3412π2+231)=2(\frac{3}{4}\cdot \frac{1}{2}\cdot \frac{\pi}{2} +\frac{2}{3}\cdot 1) =3π8+43=\frac{3\pi}{8}+\frac{4}{3}
  3. 定积分求1/4圆面积
    公式:0aa2x2dx=14πa2\int_{0}^{a} \sqrt{a^2-x^2}dx=\frac{1}{4}\pi a^2
    例题7:024x2dx=0222x2dx=14π4=π\int_{0}^{2} \sqrt{4-x^2}dx=\int_{0}^{2}\sqrt{2^2-x^2}dx=\frac{1}{4}\pi \cdot 4=\pi
    例题8:求aa(b+x)a2x2dx\int_{-a}^{a} (b+x)\sqrt{a^2-x^2}dx
    解:原式=aaba2x2+xa2x2dx=\int_{-a}^{a} b\sqrt{a^2-x^2}+x\sqrt{a^2-x^2}dx =aaba2x2dx=\int_{-a}^{a} b\sqrt{a^2-x^2}dx =2b0aa2x2dx=2b\int_{0}^{a}\sqrt{a^2-x^2}dx =2b14πa2=12πa2=2b\cdot \frac{1}{4}\pi a^2=\frac{1}{2}\pi a^2 例题9:设f(x)=3x1x201f(x)dx,求f(x)f(x)=3x-\sqrt{1-x^2}-\int_{0}^{1} f(x)dx,求f(x)
    解:令01f(x)dx=A\int_{0}^{1} f(x)dx=Af(x)=3x1x2Af(x)=3x-\sqrt{1-x^2}-A 01f(x)dx=013xdx011x2dx01Adx\int_{0}^{1}f(x)dx=\int_{0}^{1} 3xdx\int_{0}^{1} \sqrt{1-x^2}dx-\int_{0}^{1}Adx A=31210π4Ax10A=3\frac{1}{2}|\begin{matrix}1\\0\end{matrix} -\frac{\pi}{4} -Ax|\begin{matrix}1\\0\end{matrix} A=31214πAA=3\cdot \frac{1}{2}-\frac{1}{4}\pi -A 2A=3214π2A=\frac{3}{2}-\frac{1}{4}\pi A=3418πA=\frac{3}{4}-\frac{1}{8}\pi f(x)=3x1x234+18πf(x)=3x-\sqrt{1-x^2}-\frac{3}{4}+\frac{1}{8}\pi
  4. 定积分换元法 换元类型{1).无理根式代换2).三角代换换元类型\left\{\begin{matrix}1).无理根式代换\\2).三角代换\end{matrix}\right. 注:定积分换元换限
    例题10:求141x(1+x)dx\int_{1}^{4} \frac{1}{x(1+\sqrt{x}) }dx
    解:令x=t,x=t2,dx=2tdt\sqrt{x}=t,x=t^2,dx=2tdt
    上限换元:x=4,t=2x=4,t=2,下限换元:x=1,t=1x=1,t=1
    故:原式=121t2(1+t)2tdt=\int_{1}^{2} \frac{1}{t^2(1+t)}2tdt =2121t(1+t)dt=2\int_{1}^{2} \frac{1}{t(1+t)}dt =2121t11+tdt=2\int_{1}^{2} \frac{1}{t}-\frac{1}{1+t}dt =2(lntln1+t)21=2(\ln t-\ln |1+t|)|\begin{matrix}2\\1\end{matrix} =2ln232ln12=2\ln \frac{2}{3}-2\ln \frac{1}{2} =2ln43=2\ln \frac{4}{3} 例题11:求01x21x2dx\int_{0}^{1} x^2 \cdot \sqrt{1-x^2}dx
    解:令x=sintdx=costdtx=\sin t,dx=\cos tdt
    上限换元:x=1,t=π2x=1,t=\frac{\pi}{2},下限换元:x=0,t=0x=0,t=0
    原式=0π2sin2t1sin2tcostdt=\int_{0}^{\frac{\pi}{2} } \sin ^2t\cdot \sqrt{1-sin^2t} \cdot \cos tdt =0π2sin2tcos2tdt=\int_{0}^{\frac{\pi}{2} } \sin ^2t\cdot \cos ^2tdt =0π2(1cos2t)cos2tdt=\int_{0}^{\frac{\pi}{2} } (1-\cos ^2t)\cdot \cos ^2tdt =0π2cos2tcos4tdt=\int_{0}^{\frac{\pi}{2} } \cos ^2t-\cos ^4tdt =12π23412π2=\frac{1}{2}\cdot \frac{\pi}{2}-\frac{3}{4}\cdot \frac{1}{2}\cdot \frac{\pi}{2} =π16=\frac{\pi}{16}

分段函数定积分
abf(x)dx=ax0f(x)dx+bx0f(x)dx\int_{a}^{b}f(x)dx=\int_{a}^{x_0}f(x)dx+\int_{b}^{x_0}f(x)dx

注:遇到分段函数定积分,从分段点分开单独求左侧和右侧的积分,再相加。
例题1:f(x)={ex,x1lnx,x>10ef(x)dxf(x)=\left\{\begin{matrix}e^x,x\le 1\\\ln x,x>1\end{matrix}\right.求\int_{0}^{e}f(x)dx
解:0ef(x)dx\int_{0}^{e}f(x)dx
=01exdx+1elnxdx=\int_{0}^{1}e^xdx+\int_{1}^{e}\ln xdx
=ex10+(xlnx)e11ex1xdx=e^x|\begin{matrix}1\\0\end{matrix}+(x \cdot \ln x)|\begin{matrix}e\\1\end{matrix}-\int_{1}^{e}x \cdot \frac{1}{x}dx
=e1+e0xe1=e-1+e-0-x|\begin{matrix}e\\1\end{matrix}
=e=e
例题2:f(x)={1+x2,x<1ex,x1122f(1x)dxf(x)=\left\{\begin{matrix}1+x^2,x<1\\e^x,x\ge 1\end{matrix}\right.求\int_{\frac{1}{2} }^{2}f(1-x)dx
解:换元,令1x=t,x=1t,dx=dt1-x=t,x=1-t,dx=-dt
换上下限,x=12,t=12x=\frac{1}{2} ,t=\frac{1}{2} x=2,t=1x=2,t=-1
原式=121f(t)dt=-\int_{\frac{1}{2} }^{-1}f(t)dt
=112f(t)dt=\int_{-1}^{\frac{1}{2} }f(t)dt
=10f(t)dt+012f(t)dt=-\int_{-1}^{0}f(t)dt+\int_{0}^{\frac{1}{2} }f(t)dt
=10(1+t2)dt+012etdt=\int_{-1}^{0}(1+t^2)dt+\int_{0}^{\frac{1}{2} }e^tdt
=(t+13t3)01+et120=(t+\frac{1}{3}t^3)|\begin{matrix}0\\-1\end{matrix}+e^t|\begin{matrix}\frac{1}{2}\\0\end{matrix}
=0(113)+e12e0=0-(-1-\frac{1}{3})+e^{\frac{1}{2} }-e^0
=13+e121=\frac{1}{3}+e^{\frac{1}{2} }-1


定积分等式证明

积分区间再现公式:abf(x)dx=abf(a+bx)dx\int_{a}^{b} f(x)dx=\int_{a}^{b} f(a+b-x)dx
证明再现公式:换元,令a+bx=t,x=a+bt,dx=dta+b-x=t,x=a+b-t,dx=-dt
换上下限,x=a,t=bx=a,t=bx=b,t=ax=b,t=a
abf(a+bx)dx=baf(t)dt=abf(t)dt\int_{a}^{b} f(a+b-x)dx=-\int_{b}^{a} f(t)dt=\int_{a}^{b}f(t)dt
使用条件:等式两侧积分区间一样
例题1:证明:01xm(1x)ndx=01xn(1x)mdx\int_{0}^{1} x^m(1-x)^ndx=\int_{0}^{1} x^n(1-x)^mdx
证明:abf(x)dx=abf(a+bx)dx\because \int_{a}^{b}f(x)dx=\int_{a}^{b}f(a+b-x)dx
01xm(1x)ndx=01(1+0x)n[1(1+0x)]mdx\int_{0}^{1} x^m(1-x)^ndx=\int_{0}^{1} (1+0-x)^n[1-(1+0-x)]^mdx
01xm(1x)ndx=01(1x)mxndx\int_{0}^{1} x^m(1-x)^ndx=\int_{0}^{1} (1-x)^m\cdot x^ndx
故原式成立。
例题2:证明:0π2f(sinx)dx=0π2f(cosx)\int_{0}^{\frac{\pi }{2} } f(\sin x)dx=\int_{0}^{\frac{\pi }{2} }f(\cos x)
证明:abf(x)dx=abf(a+bx)dx\because \int_{a}^{b}f(x)dx=\int_{a}^{b}f(a+b-x)dx
0π2f(sinx)dx=0π2f[sin(π2x)]\int_{0}^{\frac{\pi }{2} } f(\sin x)dx=\int_{0}^{\frac{\pi }{2} }f[\sin (\frac{\pi }{2}-x)]
0π2f(sinx)dx=0π2f(cosx)\int_{0}^{\frac{\pi }{2} } f(\sin x)dx=\int_{0}^{\frac{\pi }{2} }f(\cos x)
奇变偶不变,符号看象限公式。
例题3:证明:0πf(sinx)dx=π20πf(sinx)\int_{0}^{\pi} f(\sin x)dx=\frac{\pi }{2} \int_{0}^{\pi }f(\sin x)
证明:abf(x)dx=abf(a+bx)dx\because \int_{a}^{b}f(x)dx=\int_{a}^{b}f(a+b-x)dx
0πxf(sinx)dx=0π(πx)f[sin(πx)]dx\int_{0}^{\pi} x \cdot f(\sin x)dx=\int_{0}^{\pi} (\pi-x)\cdot f[\sin (\pi-x)]dx
=0π(πx)f(sinx)dx=\int_{0}^{\pi} (\pi-x)\cdot f(\sin x)dx
=0ππf(sinx)dx0πxf(sinx)dx=\int_{0}^{\pi}\pi \cdot f(\sin x)dx-\int_{0}^{\pi}x \cdot f(\sin x)dx
20πxf(sinx)dx=π0πf(sinx)dx\Longrightarrow 2\int_{0}^{\pi} x\cdot f(\sin x)dx=\pi \int_{0}^{\pi}f(\sin x)dx
0πxf(sinx)dx=π20πf(sinx)dx\Longrightarrow \int_{0}^{\pi} x\cdot f(\sin x)dx=\frac{\pi}{2} \int_{0}^{\pi}f(\sin x)dx
故原式成立。
例题4:证明:0π2sin3xsinx+cosxdx=0π2cos3xsinx+cosxdx\int_{0}^{\frac{\pi}{2} } \frac{\sin ^3x}{\sin x+\cos x}dx=\int_{0}^{\frac{\pi}{2} } \frac{\cos ^3x}{\sin x+\cos x}dx,并利用证明结果求0π2sin3xsinx+cosxdx\int_{0}^{\frac{\pi}{2} } \frac{\sin ^3x}{\sin x+\cos x}dx
解:0π2sin3xsinx+cosxdx\because \int_{0}^{\frac{\pi }{2} }\frac{\sin ^3x}{\sin x+\cos x}dx
=0π2sin3(π2x)sin(π2x)+cos(π2x)dx=\int_{0}^{\frac{\pi }{2} }\frac{\sin ^3(\frac{\pi }{2}-x)}{\sin (\frac{\pi }{2}-x)+\cos (\frac{\pi }{2}-x)}dx
=0π2cos3xsinx+cosxdx=\int_{0}^{\frac{\pi }{2} }\frac{\cos ^3x}{\sin x+\cos x}dx
故原式得证;
0π2sin3xsinx+cosxdx+0π2cos3xsinx+cosxdx\int_{0}^{\frac{\pi }{2} }\frac{\sin ^3x}{\sin x+\cos x}dx+\int_{0}^{\frac{\pi }{2} }\frac{\cos ^3x}{\sin x+\cos x}dx
=20π2sin3xsinx+cosxdx=2\int_{0}^{\frac{\pi }{2} }\frac{\sin ^3x}{\sin x+\cos x}dx
0π2sin3xsinx+cosx=12[0π2sin3x+cos3xsinx+cosxdx]\int_{0}^{\frac{\pi }{2} }\frac{\sin ^3x}{\sin x+\cos x}=\frac{1}{2}\cdot [\int_{0}^{\frac{\pi }{2} }\frac{\sin ^3x+\cos ^3x}{\sin x+\cos x}dx]
=120π2(sinx+cosx)(sin2xsinxcosx+cos2)sinx+cosxdx=\frac{1}{2}\int_{0}^{\frac{\pi }{2} }\frac{(\sin x+\cos x)\cdot (\sin ^2x-\sin x\cos x+\cos ^2)}{\sin x+\cos x}dx
=120π21sinxcosxdx=\frac{1}{2}\int_{0}^{\frac{\pi }{2} } 1-\sin x \cos xdx
=120π21dx120π2sinxcosxdx=\frac{1}{2}\int_{0}^{\frac{\pi }{2} } 1dx-\frac{1}{2}\int_{0}^{\frac{\pi }{2} }\sin x \cos xdx
=12xπ20120π2sinxsinx=\frac{1}{2}\cdot x|\begin{matrix}\frac{\pi }{2}\\0\end{matrix}-\frac{1}{2}\int_{0}^{\frac{\pi }{2} }\sin x\sin x
=12π21212(sinx)2π20=\frac{1}{2}\cdot \frac{\pi }{2}-\frac{1}{2} \cdot \frac{1}{2}(\sin x)^2|\begin{matrix}\frac{\pi }{2}\\0\end{matrix}
=π414=π14=\frac{\pi }{4}-\frac{1}{4}=\frac{\pi -1}{4}
例题5:证明:F(x)=0πln(x2+2xcost+1)dtF(x)=\int_{0}^{\pi }\ln(x^2+2x\cos t +1)dt为偶函数。
证明:因为求证函数为偶函数,所以F(x)=F(x)F(x)=F(-x)
F(x)=0πln(x22xcost+1)dtF(-x)=\int_{0}^{\pi }\ln(x^2-2x\cos t +1)dt
0πln(x22xcost+1)dt=0πln(x2+2xcos(πt)+1)dt\int_{0}^{\pi }\ln(x^2-2x\cos t +1)dt=\int_{0}^{\pi }\ln(x^2+2x\cos (\pi -t) +1)dt
=0πln(x2+2xcost+1)dt=F(x)=\int_{0}^{\pi }\ln(x^2+2x\cos t +1)dt=F(x)
F(x)=F(x)F(x)=F(-x),即F(x)F(x)为偶函数。


定积分的几何应用
  1. x型图:由上下两个函数围成的面积(分上下观看)
    公式:S=abf(x)f(x)dxS=\int_{a}^{b}f_上(x)-f_下(x)dx
  2. y型图:由左右两个函数围成的面积(分左右观看)
    公式:S=cdf(y)f(y)dxS=\int_{c}^{d}f_右(y)-f_左(y)dx
    注意:选用y型图,改写为x=f(y)
    解题思路:
    (1). 画图,确定积分区间(联立函数,找曲线交点)
    (2). 确定积分类型
    (3). 套公式
    例题1:求由曲线y=x2y=x^2y=1xy=\frac{1}{x}x=2x=2所围成的图形面积。
    解:

    选择x型图 S=12(x21x)dxS=\int_{1}^{2}(x^2-\frac{1}{x})dx =13x3lnx21=\frac{1}{3}x^3-\ln x|\begin{matrix}2\\1\end{matrix} =(83ln2)(13ln1)=(\frac{8}{3}-\ln 2)-(\frac{1}{3}-\ln 1) =73ln2=\frac{7}{3}-\ln 2 例题2:求由曲线y=x2y=x^2y=xy=\sqrt{x}所围成的图形面积。
    解:
    联立两个方程{y=x2y=x\left\{\begin{matrix}y=x^2\\y=\sqrt{x} \end{matrix}\right.
    联立x2=xx^2=\sqrt{x},得交点(0,0),(1,1)(0,0),(1,1)

    选择x型图 S=01(xx2)dxS=\int_{0}^{1}(\sqrt{x}-x^2)dx 01(x12x2)dx\int_{0}^{1}(x^{\frac{1}{2} }-x^2)dx =23x3213x310=\frac{2}{3}x^{\frac{3}{2}}-\frac{1}{3}x^3|\begin{matrix}1\\0\end{matrix} =2313=1=\frac{2}{3}-\frac{1}{3}=1 选择y型图 S=01(yy2)dyS=\int_{0}^{1}(\sqrt{y}-y^2)dy =23y3213y310=\frac{2}{3}y^{\frac{3}{2}}-\frac{1}{3}y^3|\begin{matrix}1\\0\end{matrix} =2313=13=\frac{2}{3}-\frac{1}{3}=\frac{1}{3} 例题3:求由曲线y=1xy=\frac{1}{x}y=xy=xx=2x=2xx轴所围成的图形面积。
    解:

    选择x型图 S=S1+S2S=S_1+S_2 S1=01xdx=1210=12S_1=\int_{0}^{1}xdx=\frac{1}{2}|\begin{matrix}1\\0\end{matrix}=\frac{1}{2} S2=121xdx=lnx21=ln2S_2=\int_{1}^{2}\frac{1}{x}dx=\ln |x| |\begin{matrix}2\\1\end{matrix}=\ln 2S=S1+S2=ln2+12S=S_1+S_2=\ln 2+\frac{1}{2}

定积分求旋转体积
  1. x型图绕x轴旋转
    公式:Vx=πabf2(x)dxV_x=\pi \int_{a}^{b}f^2(x)dx
    若是两个函数,f(x),f(x)f_上(x),f_下(x)间的体积,Vx=πabf2(x)f2(x)dxV_x=\pi \int_{a}^{b}f_上^2(x)-f_下^2(x)dx
  2. y型图绕y轴旋转
    公式:Vy=πcdf2(y)dyV_y=\pi \int_{c}^{d}f^2(y)dy
    若是两个函数,f(y),f(y)f_左(y),f_右(y)间的体积,Vy=πabf2(y)f2(y)dyV_y=\pi \int_{a}^{b}f_右^2(y)-f_左^2(y)dy
  3. x型图绕y轴旋转

    公式:V=2πabxf(x)dyV=2\pi \int_{a}^{b}x\cdot f(x)dy
    例题1:求由函数y=sinx0xπy=\sin x,0\le x\le \pi xx轴所围成的图形绕y轴旋转一周所得旋转体积。
    解:
    V=2πabxf(x)dxV=2\pi \int_{a}^{b}x \cdot f(x)dx =2π0πxsinxdx=2\pi \int_{0}^{\pi}x\cdot \sin xdx =2π0πxdcosx=-2\pi \int_{0}^{\pi}x d\cos x =2π(xcosxπ00πcosxdx)=-2\pi (x\cdot \cos x|\begin{matrix}\pi\\0\end{matrix}-\int_{0}^{\pi}\cos xdx) =2π(ππsinxπ0)=-2\pi (\pi \cdot \pi-\sin x|\begin{matrix}\pi\\0\end{matrix}) =2π(π(1)0=-2\pi (\pi \cdot (-1)-0 =2π2=2\pi ^2 例题2:求由函数y=xy=\sqrt{x}x=4x=4及x轴所围成的面积和绕y轴旋转一周所得旋转体积。
    解:
    S=04xdxS=\int_{0}^{4}\sqrt{x}dx =04x12dx=\int_{0}^{4}x^{\frac{1}{2} }dx =23x3240=\frac{2}{3}\cdot x^{\frac{3}{2} }|\begin{matrix}4\\0\end{matrix} =23(4)32=\frac{2}{3}\cdot (4)^{\frac{3}{2} } =163=\frac{16}{3} V=πcdf2(y)f2(y)dyV=\pi \int_{c}^{d}f_右^2(y)-f_左^2(y)dy =π02(42y4)dy=\pi \int_{0}^{2}(4^2-y^4)dy =π0216y4dy=\pi \int_{0}^{2}16-y^4dy =π1(6y15x520=\pi \cdot 1(6y-\frac{1}{5}x^5|\begin{matrix}2\\0\end{matrix} =π(32325)=\pi \cdot (32-\frac{32}{5}) =1285π=\frac{128}{5}\pi V=2πabxf(x)dxV=2\pi \int_{a}^{b}x \cdot f(x)dx =2π04xxdx=2\pi \int_{0}^{4}x\cdot \sqrt{x}dx =2π04x32dx=2\pi \int_{0}^{4}x^{\frac{3}{2} }dx =2π25x5240=2\pi \frac{2}{5}x^{\frac{5}{2} }|\begin{matrix}4\\0\end{matrix} =4π5425=\frac{4\pi }{5} 4^{\frac{2}{5} } =1285π=\frac{128}{5}\pi
  • 标题: 高等数学-积分
  • 作者: SunnyDusk
  • 创建于 : 2023-11-15 12:04:00
  • 更新于 : 2025-01-02 13:03:19
  • 链接: https://www.030706.xyz,https//www.sunnydusk.cn/2023/11/15/math-3/
  • 版权声明: 本文章采用 CC BY-NC-SA 4.0 进行许可。
评论
目录
高等数学-积分